
Methods 
 

 
Mice, superovulation, timed breeding and staging 

B6C3F1/J 3-week old female mice were purchased from Jackson Laboratories (Stock 

no: 100010). Females were injected with 5 IU pregnant mares’ serum gonadotrophin (Sigma) 

and 48 hours later with 5 IU human chorionic gonadotrophin (Sigma). Females were paired 

overnight with Runx1IRES-GFP (Runx1tm4Dow) [1] homozygous males. Embryos were staged by 

counting somites. Embryos displaying abnormal development were discarded. 

 

Isolation of embryonic tissues 

Yolk sacs (YS) were removed from E9.5 and E10.5 embryos, and vitelline vessels kept 

with the embryonic portion of conceptuses. The head, cardiac and pulmonary regions, liver, 

digestive tube, tail and limb buds were removed. The remaining portion containing the dorsal 

aorta in the aorta-gonad-mesonephros region, portions of somite, umbilical and vitelline vessels 

were collected as “arteries”. The dissected tissues were digested for 1hr in 0.125% collagenase 

(Sigma) in PBS/10% FBS (Gibco)/1% Pen/Strep, washed, and resuspended in 

PBS/10%FBS/PS.  

 

Flow cytometry and RNA preparation 

A total of 651 embryos and yolk sacs were collected for E9.5 tissues and 264 embryos 

and yolk sacs for E10.5 tissues for RNA-Seq. Cells were labeled with the following antibodies 

from eBiosciences: CD41-PE (AB_2538354), CD31-PE-cy7 (AB_469616), CD45-APC 

(AB_469392), and Kit-APC-efluor780 (AB_1272177). DAPI (Invitrogen) was used for viability. 

Samples were sorted on a BD Influx into Trizol-LS (Thermo) or PBS/20%FBS/PS/25mM HEPES. 

RNA was isolated using Qiagen RNeasy Microkit with DNAse step performed on column or 

using Turbo DNA-freeTM Kit (Thermo).  



 

Endothelial and hematopoietic validation assays 

Endothelial tube assays were performed as described by Medvinsky et al. [2]. Sorted 

populations were cultured on OP9 stromal cells on a 0.1% gelatin coated 96-well plate (8500 

OP9 cells/well) in aMEM, 10% FBS (Gibco 16000-044) and 50 ng/mL VEGF (Peprotech) for 4 

days. Immunohistochemistry was performed using 5µg/mL anti-mouse CD31 (BD) and 

visualized using Vectastain ABC-AP kit and Vector Blue Alkaline Phosphatase Substrate Kit 

(Vector Labs). CD31+ endothelial tubes were counted on a light microscope. Hemogenic 

potential was assessed by culturing sorted cells in limiting range on OP9 stromal cells 

supplemented with 10% FBS (Gibco) and 10 ng/mL each SCF, IL-3, Flt3L and IL-7 (Peprotech) 

for 9-11 days as described by Swiers et al. [3]. Each well was assayed for the presence of 

CD45+ cells on a BD LSRII flow cytometer.  The frequency of HE events was calculated using 

ELDA software [4]. Hematopoietic colony assays were performed in M3434 (StemCell 

Technologies) and counted after 7 days.  

 

Transcriptome assembly and expression level estimate from read counts 

Paired-end sequencing reads were mapped to the reference mouse genome (release 

mm9) using Tophat2 [5]. Only uniquely mapped reads with fewer than 2 mismatches were used 

for downstream analyses. Transcripts were assembled using Cufflinks [6] using mapped 

fragments outputted by Tophat. Ensemble (release 66) was used as the source of annotated 

genes and transcripts. Normalized transcript abundance was computed using Cufflinks and 

expressed as FPKM (Fragments Per Kilobase of transcripts per Million mapped reads). Gene-

level FPKM values were computed by summing up FPKM values of their corresponding 

transcripts [6]. Following previous studies [7], we used a FPKM value of one as the cutoff for 

expressed genes, which represents approximately one copy of RNA per cell. RNA-Seq data 



reproducibility was assessed by computing Spearman correlation of gene expression between a 

pair of biological replicates. Genes with zero read counts in all biological replicates were 

excluded from the correlation calculation.  

 

Identification of differentially expressed genes and pathway enrichment analysis 

FeatureCounts [8] was used to summarize read counts for each gene. With normalized 

read counts for each gene, EBSeq [9] was used to detect significantly differentially expressed 

genes with a false discovery rate (FDR) cutoff of 0.05 and a fold change cutoff of 1.5. We 

performed three pairwise comparisons: artery hemogenic endothelium (HE) vs. artery non-

hemogenic endothelium (E), yolk sac (YS) HE vs. YS E, and artery HE vs. YS HE. Enriched 

signaling pathways were identified using Enrichr for each comparison using the differentially 

expressed genes [10]. 

Construction of condition-specific transcriptional regulatory networks (TRNs) using RNA-Seq 

data 

A recent study assessed the performance of 35 computational methods for inferring 

TRNs using gene expression data alone [11]. The study revealed that no single inference 

method performs optimally across all data sets. In contrast, integration of predictions from 

multiple inference methods shows robust and high performance across diverse data sets. We 

thus sought to build a consensus TRN by using five top performing inference methods, including 

a method based on Pearson correlation, the context likelihood of relatedness (CLR) method 

[12], Inferelator [13], trustful inference of gene regulation using stability selection (TIGRESS) 

[14], and gene network inference with ensemble of trees (GENIE3) [15]. 

   

 We collected a set of 146 gene expression profiling data for cells of the hematopoietic 



system from the previously published five studies [16-20], and the current study. Before 

combining datasets from different studies, we performed quantile normalization using the RMA 

algorithm [21] and removed batch effects using the ComBat algorithm [22] 

   

 To infer a conditional-specific TRN using the consensus approach, two consensus TRNs 

are first built, Gall based on using all samples in the expression compendium, and Gall-condition 

based on using all samples minus the samples of interest. To obtain the condition-specific TRN 

Gcondition, all edges in Gall-condition (Eall-condition) are eliminated from Gall (Fig. 2D). 

 

Prioritization of key transcription factors in a TRN 

We used the constructed TRNs to identify key transcription factors (TFs) regulating a 

developmental transition. To this end, we assumed that a key TF tends to have a larger impact 

on the full set of differentially expressed genes during the transition. From a network perspective, 

this means the regulatory role of a key TF tends to be propagated to a larger set of differentially 

expressed genes in the TRN, either via direct or indirect connections. Based on this assumption, 

we computed a distance between two genes, 𝒊 and 𝒋, in the TRN as following: 𝑾𝒊,𝒋 = 𝟏 −

𝒍𝒐𝒈𝟏𝟎 𝒑𝒊 !𝒍𝒐𝒈𝟏𝟎(𝒑𝒋)
𝟐∗𝒍𝒐𝒈𝟏𝟎(𝒑𝒎𝒊𝒏)

, where 𝒑𝒊  and 𝒑𝒋  are the differential expression p-values for gene 𝒊  and 𝒋 , 

respectively. 𝒑𝒎𝒊𝒏 is the minimum differential expression p-value among all genes in the TRN. 

With the distance-weighted TRN, we calculate an average shortest distance between a given TF 

and all differentially expressed genes in the network. We computed the pairwise shortest path 

using the Dijkstra’s algorithm [23]. Statistical significance of average shortest distance is 

computed using a null distribution computed on randomized networks. To obtain randomized 

networks, the edge weight of the real network was shuffled but with node degree preserved. 

This procedure was repeated 1,000 times to generate a set of randomized networks. 
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